106 research outputs found

    Half-Breed

    Get PDF
    Photograph of Chér wearing headdress and white clothinghttps://scholarsjunction.msstate.edu/cht-sheet-music/12565/thumbnail.jp

    Insights Gained from the Ongoing Integrated Arrival/Departure/Surface (IADS) Traffic Flow Operational Prototype

    Get PDF
    The Insights Gained from the Ongoing Integrated Arrival/Departure/Surface (IADS) Traffic Flow Operational Prototype presentation will include a definition of the learning objectives for the audience, an overview/explanation of the ATD-2 project, an overview of the ATC/Operator data exchange and integration that is foundational for advanced surface capability, and a description of the ATC/Operator data exchange and integration research questions and insights. It will also give an overview of the overhead stream around CLT and a preview of the operational integration benefits, research questions, and insights related to the overhead stream. It will continue with a surface metering process flow overview, a description of local surface demand/capacity imbalance, the benefits of collaborative surface metering, the associated research questions and insights, and wrap up with the next steps planned for ATD-2

    Airspace Technology Demonstration 2 (ATD-2): ATD-2 CLT Pilot Community Engagement

    Get PDF
    The Airspace Technology Demonstration 2 (ATD-2) project conducted a pilot community workshop at Charlotte Douglas International Airport (CLT) in Charlotte, North Carolina. The goal was to familiarize pilots with the ATD-2 project, with an emphasis on procedures that may affect pilots during the Phase 1 Field Demonstration (beginning September 30, 2017). At this workshop, the high-level goals and objectives of ATD-2, expected benefits for pilots, changes to procedures, training requirements, and data sharing elements were presented

    Operational Impact of the Baseline Integrated Arrival, Departure, and Surface System Field Demonstration

    Get PDF
    To address the Integrated Arrival, Departure, and Surface (IADS) challenge, NASA is developing and demonstrating trajectory-based departure automation under a collaborative effort with the FAA and industry known as Airspace Technology Demonstration 2 (ATD-2). ATD-2 builds upon and integrates previous NASA research capabilities that include the Spot and Runway Departure Advisor (SARDA), the Precision Departure Release Capability (PDRC), and the Terminal Sequencing and Spacing (TSAS) capability. The ATD-2 field demonstration is organized into three phases. Phase I illustrates a Baseline IADS demonstration and includes all components of ATD-2 running in operational environments. Subsequent phases will fuse together strategic scheduling components as well as take into account metroplex considerations. This paper describes the baseline IADS system that was deployed at the end of 2017 and is continuing to run as part of the ATD-2 demonstration taking place at Charlotte-Douglas International Airport (CLT). The primary areas of deployment and system use are in the CLT Air Traffic Control Tower, CLT TRACON, CLT American Airlines ramp tower, Washington Center facility and American Airlines Integration Operations Center (IOC). In addition to describing the functions and capabilities that are part of the baseline IADS system, this paper also provides metrics regarding operational use as well as initial benefits metrics. Benefit metrics continue to be collected and aggregated across the areas of system delay, throughput, taxi time, fuel burn savings, and emissions savings. Furthermore, benefits as a result of common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are described. The overall benefit of improved predictability and efficiency as a result of the baseline IADS system demonstration is also discussed

    Field Evaluation of the Baseline Integrated Arrival, Departure, and Surface Capabilities at Charlotte Douglas International Airport

    Get PDF
    NASA is currently developing a suite of decision support capabilities for integrated arrival, departure, and surface (IADS) operations in a metroplex environment. The effort is being made in three phases, under NASA's Airspace Technology Demonstration 2 (ATD-2) sub-project, through a strong partnership with the Federal Aviation Administration (FAA), air carriers, airport, and general aviation community. The Phase 1 Baseline IADS capabilities provide enhanced operational efficiency and predictability of flight operations through data exchange and integration, tactical surface metering, and automated coordination of release time of controlled flights for overhead stream insertion. The users of the IADS system include the personnel at the Charlotte Douglas International Airport (CLT) air traffic control tower, American Airlines ramp tower, CLT terminal radar approach control (TRACON), and Washington Center. This paper describes the Phase 1 Baseline IADS capabilities and field evaluation conducted at CLT from September 2017 for a year. From the analysis of operations data, it is estimated that 538,915 kilograms of fuel savings, and 1,659 metric tons of CO2 emission reduction were achieved during the period with a total of 944 hours of engine run time reduction. The amount of CO2 savings is estimated as equivalent to planting 42,560 urban trees. The results have also shown that the surface metering had no negative impact on on-time arrival performance of both outbound and inbound flights. The technology transfer of Phase 1 Baseline IADS capabilities has been made to the FAA and aviation industry, and the development of additional capabilities for the subsequent phases is underway

    Operational Impact of the Baseline Integrated Arrival, Departure and Surface System Field Demonstration

    Get PDF
    To address the Integrated Arrival, Departure, and Surface (IADS) challenge, NASA is developing and demonstrating trajectory-based departure automation under a collaborative effort with the FAA (Federal Aviation Administration) and industry known Airspace Technology Demonstration 2 (ATD-2). ATD-2 builds upon and integrates previous NASA research capabilities that include the Spot and Runway Departure Advisor (SARDA), the Precision Departure Release Capability (PDRC), and the Terminal Sequencing and Spacing (TSAS) capability. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users of the tools across a number of roles benefit from a real time system that enables common situational awareness. A real time dashboard was developed to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. In addition to shared situational awareness, the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial proposed set of metrics. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017: Charlotte-Douglas International Airport (CLT). The architecture of implementing such a tool as well as potential uses are presented for operations at CLT. Metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of system delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are explored. The potential of the real time tool to inform users of the predictability and efficiency of using a trajectory-based departure scheduling system is also discussed

    Industry Inputs into Future NASA Project Planning

    Get PDF
    NASA is currently formulating its plans for follow-on related work that builds upon knowledge gained in ATD related activities and collaborative engagements with the aviation community. The NASA Air Traffic Management - eXploration (ATM-X) project has the desire to continue this engagement with the aviation industry and capture industry inputs to continue development of their plans and is supporting this outreach with the ATD-2 team

    ATD-2 Briefing to Southwest Data Science Community

    Get PDF
    The purpose of this presentation is to provide Southwest Airlines, an ATD-2 (Airspace Technology Demonstration-2) airline industry partner, with a project overview and the breadth of ATD-2 data analysis activities

    Natural Splice Variant of MHC Class I Cytoplasmic Tail Enhances Dendritic Cell-Induced CD8+ T-Cell Responses and Boosts Anti-Tumor Immunity

    Get PDF
    Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-Kb generate significantly augmented CTL responses to viral challenge. Herein, we show that Δ7-Db-expressing DCs stimulated significantly more proliferation and much higher cytokine secretion by melanoma antigen-specific (Pmel-1) T cells. Moreover, in combination with adoptive Pmel-1 T-cell transfer, Δ7-Db DCs were superior to WT-Db DCs at stimulating anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival. Human DCs engineered to express Δ7-HLA-A*0201 showed similarly enhanced CTL stimulatory capacity. Further studies demonstrated impaired lateral membrane movement and clustering of human Δ7-MHC-I/peptide complexes, resulting in significantly increased bioavailability of MHC-I/peptide complexes for specific CD8+ T cells. Collectively, these data suggest that targeting exon 7-encoded MHC-I cytoplasmic determinants in DC vaccines has the potential to increase CD8+ T-cell stimulatory capacity and substantially improve their clinical efficacy

    Airspace Technology Demonstration 2 (ATD-2) Technology Description Document (TDD)

    Get PDF
    This Technology Description Document (TDD) provides an overview of the technology for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of the National Aeronautics and Space Administration's (NASA) Airspace Technology Demonstration 2 (ATD-2) project, to be demonstrated beginning in 2017 at Charlotte Douglas International Airport (CLT). Development, integration, and field demonstration of relevant technologies of the IADS system directly address recommendations made by the Next Generation Air Transportation System (NextGen) Integration Working Group (NIWG) on Surface and Data Sharing and the Surface Collaborative Decision Making (Surface CDM) concept of operations developed jointly by the Federal Aviation Administration (FAA) and aviation industry partners. NASA is developing the IADS traffic management system under the ATD-2 project in coordination with the FAA, flight operators, CLT airport, and the National Air Traffic Controllers Association (NATCA). The primary goal of ATD-2 is to improve the predictability and operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 project is a 5-year research activity beginning in 2015 and extending through 2020. The Phase 1 Baseline IADS capability resulting from the ATD-2 research will be demonstrated at the CLT airport beginning in 2017. Phase 1 will provide the initial demonstration of the integrated system with strategic and tactical scheduling, tactical departure scheduling to an en route meter point, and an early implementation prototype of a Terminal Flight Data Manager (TFDM) Electronic Flight Data (EFD) system. The strategic surface scheduling element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface Operations Directorate
    corecore